翻訳と辞書
Words near each other
・ Circuitous
・ Circuitpac
・ Circuitry Man
・ Circuits Cloud
・ Circuits over sets of natural numbers
・ Circulade
・ Circulaire
・ Circulant graph
・ Circulant matrix
・ Circular
・ Circular (album)
・ Circular (application)
・ Circular 10/65
・ Circular 10/70
・ Circular 230
Circular algebraic curve
・ Circular analysis
・ Circular arc hull
・ Circular bacterial chromosome
・ Circular Breathing
・ Circular breathing
・ Circular buffer
・ Circular chess
・ Circular coloring
・ Circular Congregational Church
・ Circular connector
・ Circular convolution
・ Circular cumulative causation
・ Circular definition
・ Circular delivery company


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Circular algebraic curve : ウィキペディア英語版
Circular algebraic curve

In geometry, a circular algebraic curve is a type of plane algebraic curve determined by an equation ''F''(''x'', ''y'') = 0, where ''F'' is a polynomial with real coefficients and the highest-order terms of ''F'' form a polynomial divisible by ''x''2 + ''y''2. More precisely, if
''F'' = ''F''''n'' + ''F''''n''−1 + ... + ''F''1 + ''F''0, where each ''F''''i'' is homogeneous of degree ''i'', then the curve ''F''(''x'', ''y'') = 0 is circular if and only if ''F''''n'' is divisible by ''x''2 + ''y''2.
Equivalently, if the curve is determined in homogeneous coordinates by ''G''(''x'', ''y'', ''z'') = 0, where ''G'' is a homogeneous polynomial, then the curve is circular if and only if ''G''(1, ''i'',0) = ''G''(1, −''i'',0) = 0. In other words, the curve is circular if it contains the circular points at infinity, (1, ''i'' ,0) and (1, −''i'', 0), when considered as a curve in the complex projective plane.
==Multicircular algebraic curves==
An algebraic curve is called ''p''-circular if it contains the points (1, ''i'', 0) and (1, −''i'', 0) when considered as a curve in the complex projective plane, and these points are singularities of order at least ''p''. The terms ''bicircular'', ''tricircular'', etc. apply when ''p'' = 2, 3, etc. In terms of the polynomial ''F'' given above, the curve ''F''(''x'', ''y'') = 0 is ''p''-circular if ''F''''n''−''i'' is divisible by (''x''2 + ''y''2)''p''−''i'' when ''i'' < ''p''. When ''p'' = 1 this reduces to the definition of a circular curve. The set of ''p''-circular curves is invariant under Euclidean transformations. Note that a ''p''-circular curve must have degree at least 2''p''.
The set of ''p''-circular curves of degree ''p'' + ''k'', where ''p'' may vary but ''k'' is a fixed positive integer, is invariant under inversion. When ''k'' is 1 this says that the set of lines (0-circular curves of degree 1) together with the set of circles (1-circular curves of degree 2) form a set which is invariant under inversion.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Circular algebraic curve」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.